
NAVAL POSTGRADUATE SCHOOL
Monterey, California

TNNI

ThESIS
A CONCEPTUAL DESIGN OF A

SOFTWARE BASE MANAGEMENT SYSTEM
FOR THE

COMPUTER AIDED PROTOTYPING SYSTEM

by

Daniel Galik

December 1988

Thesis Advisor: Luqi

Approved for public release; distribution is unlimited

0 7 MAR 1989

A

)

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
I a Report Security Classification Unclassified I b Restrictive Markings
2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (If Applicable) 62 Naval Postgraduate School
6c Address (city. state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)
8c Address (city, state, and ZIP code) 10 Source of Funding Numbers

t__ Meain Number I D No I Tuk No WrIk Una Awemsc No

ii Title (include Security Classification) A Conceptual Design of a Software Base Management System for the
Computer Aided Prototyping System
12 Personal Author(s) Galik, Daniel
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count
Master's Thesis From To 1988 December 81
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the De artment of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)
Field Group Subgroup Ada, Rapid Prototyping, Software Reusability, Object-Oriented

Database Management Systems, Computer Aided Prototyping System, Prototype
System Description Language, CAPS, PSDL

19 Abstract (continue on reverse if necessary and identify by block number

This thesis builds upon work previously done in the development of the Computer Aided Prototyping System
(CAPS) and the Prototype System Description Language (PSDL), and presents a conceptual design for the
Software Base Management System (SBMS) component of CAPS. The SBMS is the most critical component of
CAPS as it will coordinate the retrieval and integration of Ada software modules. A robust SBMS that enables a
software system designer to successfully retrieve reusable Ada components will expedite the prototype
development process and enhance designer productivity. Implementation of the conceptual design will be the
basis for further work in this area. (Ada is a registered trademark of the United States Government, Ada Joint
Program Office.)

20 Distribution/Availability of Abstract 21 Abstract Security Classification

2 unclassified/unlimited 1 same as report] DTIC users Unclassified
22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol
Luqi (408) 646-2735 52LQ
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

-- - - ,-- ,,,,,... m ,Uta = m nmn -= =,,m n n n m

Approved for public release; distribution is unlimited

A CONCEPTUAL DESIGN OF A
SOFTWARE BASE MANAGEMENT SYSTEM

FOR THE
COMPUTER AIDED PROTOTYPING SYSTEM

by

Daniel Galik
Lieutenant Commander, United States Navy

B.S., United States Naval Academy, 1976

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author: 0,,,d

7el
ik

Approved by: L
Luq1, ThesiL Advisor

Valdis Berzins, Sec(fid Reader

Robert B. McGhee, Chairman
Department of Computer Science

Kneale T. Marsh

Dean of Information and Policy Sciences

p

ii

ABSTRACT

This thesis builds upon work previously done in the development of the Computer

Aided Prototyping System (CAPS) and the Prototype System Description Language

(PSDL), and presents a conceptual design for the Software Base Management System

(SBMS) component of CAPS. The SBMS is the most critical component of CAPS as it

will coordinate the retrieval and integration of Ada software modules. A robust SBMS that

enables a software system designer to successfully retrieve reusable Ada components will

expedite the prototype development process and enhance designer productivity.

Implementation of the conceptual design will be the basis for further work in this area.

(Ada is a registered trademark of the United States Government, Ada Joint Program

Office.)

/ -c, I

GPY

L -

I+ ..
. . . 1

iii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND ... 1

1. Hard Real-Time and Embedded Software Systems 2
2. Integrated Programming Environments 3

3. Rapid Prototyping and the Computer Aided Prototyping System 4

B. OBJECTIVES ... 6

C. ORGANIZATION ... 6

II. PREVIOUS RESEARCH AND SURVEY OF SOFTWARE
REUSABILITY ... 8
A. PREVIOUS RESEARCH ... 8

1. The Computer Aided Prototyping System 8

2. Prototype System Description Language 8

3. The PSDL Prototyping Method ... 11
4. Benefits of CAPS .. 12

B. SURVEY OF SOFTWARE REUSABILITY 13

1. Introduction ... 13
2. Classification and Retrieval .. 13

3. The Graphical Object-Structured Editor 15

4. The Reusable Software Library ... 15
5. Software Factories ... 17
6. Object-Oriented Programming and Reusability 18
7. Reusability and Abstraction ... 19

8. Object-Oriented Design .. 21
9. Ada and Reusability ... 24

10. The Ada Software Repository ... 25

11. The Common Ada Missile Packages (CAMP) Project 25

12. Summary ... 26

iv

III. CONCEPTUAL DESIGN FOR THE SOFTWARE BASE
MANAGEMENT SYSTEM ... 27
A. THE SELECTION OF A DATABASE MANAGEMENT SYSTEM FOR

THE CAPS SOFTWARE DATABASE ... 27
1. Relational, Hierarchical, and Network Database Management Systems

(D BM S) ... 27
2. Object Technology ... 28

3. Properties of OODBMS .. 29
B. THE SOFTWARE DATABASE ... 31

1. Applying OOD to the CAPS Software Base Components 31
C. THE DESIGN OF AN OBJECT-ORIENTED SCHEMA FOR THE CAPS

SOFTW ARE BASE .. 35
1. Introduction ... 35
2. PSDL Specifications and Ada Software Modules 36
3. Software Base Classification Scheme 37
4. Mapping of PSDL Specifications to Ada 38
5. The Formation of the Software Base Schema 39

a. Object Properties in the Software Base 40

b. Object Methods in the Software Base 41

c. Using An Object-Oriented Language to Define the Software

Base Schema ... 43
D. IMPLEMENTATION OF AN OBJECT-ORIENTED SOFTWARE BASE

MANAGEMENT SYSTEM FOR CAPS USING VBASE 46

1. Vbase System Overview .. 46
2. Vbase Database Design ... 47

3. Using COP to Implement the Methods Associated With the Objects in
the CAPS Software Base .. 49

4. Interface Requirements Between the SBMS and the User Interface 53

5. Other Useful Vbase Capabilities ... 54
6. Problems W ith Vbase ... 55

E. DISCUSSION OF KNOWLEDGE BASE SUPPORT FOR RAPID
PROTOTYPIN G ... 56

IV. CONCLUSIONS AND RECOMMENDATIONS 58

A. SUMMARY AND CONCLUSIONS ... 58
B. RECOMMENDATIONS FOR FURTHER RESEARCH 59

V

APPENDIX A MAPPING OF PSDL TO ADA 60

APPENDIX B SAMPLE APPLICATION PROGRAM 63

APPENDIX C LISTING OF ERRORS IN VBASE MANUAL 66

LIST OF REFERENCES ... 67

INITIAL DISTRIBUTION LIST .. 70

vi

LIST OF FIGURES

Figure 1. Process of Requirements Determination and Validation 6
Figure 2. Computer Aided Prototyping System ... 9

Figure 3. Booch Taxonomy ... 20

Figure 4. Weapons Controller .. 33

Figure 5. CAPS Software Base Class Hierarchy ... 40

Figure 6. Vbase Components and Connections ... 47

vii

I. INTRODUCTION

A. BACKGROUND

Creating software for hard real-time and embedded computer systems is an immense

and complex job, and involves increasingly high costs. The rapid advances in hardware

technology of the past ten years have not been accompanied by similar advances in

software development technologies. The primary problem manifesting itself was the

reliability of software. Programming is a costly, labor-intensive activity, and there has

been a steady increase in the proportion of system development costs allocated to software

development. Errors made early in the development cycle of large, complex systems

contributed significantly to poor reliability and resulted in large software maintenance costs.

The United S:ates Department of Defense (DOD) is the world's largest user of

computers. The mounting problem in software development is of critical concern to DOD

for two reasons. First, is the fact that software reliability directly affects overall weapon

system reliability, where the cost of system failure could be immense, not only in terms of

equipment failure but also in terms of human lives. The second reason involves DOD

budget constraints, particularly in today's environment where every defense dollar spent is

subject to intense public scrutiny and justification. Software costs are becoming the

principal factor in embedded computer costs. It is also known that embedded systems

software costs are by far the major contributor to the overall software budget within the

DOD [Ref. l:p. 30]. A report issued in 1976 that contributed to the development of Ada

summarized some of the problems of software development, stating that the problems

"...appear in the form of software that is nonresponsive to user needs, unreliable,

excessively expensive, untimely, inflexible, difficult to maintain, and not reusable."

[Ref 1:p. 41]

1. Hard Real-Time and Embedded Software Systems

The programming of large, hard real-time and embedded computer software

systems is a very difficult and complex task for system designers. In a typical Navy

weapons system, there may be hundreds of computer programs running simultaneously

controlling and coordinating inputs from components such as shipboard or aircraft

navigation, radar, and weapons fire control systems. In 1987, after 12 years of design,

review, and development, the DOD mandated the use of Ada as its single, common

computer programming language for computers integral to weapons systems. The

mandate, through Directive 3405.2, required that Ada be used in all embedded computer

software programs, whether new programs or upgrades to existing ones [Ref. 2:p. 33].

This particular domain of embedded systems was targeted by DOD because it offers a

potential for enormous savings in system life cycle costs.

A hard real-time system can be defined as a software or firmware controlled

system that performs all its process functions within critical specified time constraints

[Ref. 3:p. 3]. The majority of embedded systems are real-time systems, particularly

typical Navy weapons systems, where there is a requirement for real-time processing, and

the system must respond to physical stimuli in real time. A real-time system usually

includes a set of independent hardware devices that operate at widely differing speeds that

must be controlled and synchronized. A real-time system is much more difficult to design

and implement than a non-real-time system. As discussed in Ref. 3, some of the

difficulties include:

" Handling of stringent time requirements and performance specifications.
* Interfacing with a real-time clock.

2

* Control of hardware devices such as communication lines, terminals, and computer
resources.

* Processing of messages that arrive at irregular intervals, with fluctuating input rates,
and with different priorities.

* Control of fault conditions with facilities for various degrees of recovery.
* Handling of queues and buffers for storage of messages and data items.

• Modeling of concurrent conditions into a proper set of concurrent processes.
* Allocation and control of concurrent processes to processors.

* Handling of communication and synchronization between concurrent processes.

* Protection of data shared between concurrent processes.
• Scheduling and dispatching (including priority handling) of concurrent processes.

Typical operation of hard real-time systems is that they are expected to run

continuously in an automated fashion with extreme reliability. They are also required to

perform rapid processing to meet critical real-time constraints in satisfying system

performance requirements. In tactical weapon systems, system reliability and the ability to

meet critical time constraints are of utmost importance. The development of these complex,

hard real-time software systems remains a costly operation and requires more work at the

front end of the development cycle in properly identifying and analyzing all the critical time

constraint relationships.

2. Integrated Programming Environments

With the demand for hard real-time and embedded computer systems increasing,

it is becoming critical that new approaches be proposed for the development of large

software systems. Typically, these large embedded systems have similar requirements for

critical real-time control and high reliability. Software engineers and end-users would

benefit from an automated methodology which allows validation of design specifications

and functional requirements early in the development life cycle. A fast, efficient, easy-to-

use tool would increase designer productivity and also allow the user to feel more confident

that the final product is feasible. Current programming languages alone cannot deal

3

adequately with the growing complexity of large computer programming projects,

particularly those involving embedded systems. Fundamental changes are needed in the

way we program. Just as high-level languages enabled the programmer to escape from the

intricacies of machine-level code, higher-level programming systems can provide help in

understanding and manipulating complex systems and components [Ref. 4:p. 391]. As

these new programming tools continue to develop and mature, they will provide another

level of abstraction in the progrf.mming process, making life easier for the designer of

large, complex systems.

Well-designed integrated programming environments which incorporate

advanced programming tools, highly interactive editors, and high resolution graphics, will

have a positive impact on the future of programming and software development. Integrated

programming environments can also be classified as "computer-aided design systems for

software" [Ref. 5:p.xi]. Their goal is to provide a unified programming environment with

a large set of tools that stimulates program conception at a high level of abstraction.

Research is rapidly expanding in the field of programming environments with the intent of

improving long term cost-effective software reliability by providing a computer-based

capability to support the entire process of program design, development, test, and

maintenance.

3. Rapid Prototyping and the Computer Aided Prototyping System

The Computer Aided Prototyping System (CAPS) is a currently conceptualized

tool which is being developed with a goal of improving software development technology

[Ref. 6]. CAPS will aid the software designer in the requirements analysis of hard, real-

time systems by using specifications and reusable software components to automate the

rapid prototyping process. It implements the rapid prototyping concept utilizing a high

level prototyping language called Prototype System Description Language (PSDL)

4

[Ref. 7]. The component elements that make up CAPS will be discussed in Chapter II.

One of the most critical components of CAPS is the software database and its associated

Software Based Management System (SBMS). A robust SBMS that enables a software

system designer to successfully retrieve reusable software components will expedite the

prototype development process and enhance designer productivity.

The goal of rapid prototyping is to develop an executable model of the intended

system. When utilized during the early stages of the development life cycle, rapid

prototyping allows validation of the requirements, specifications, and initial design, before

valuable time and effort are expended on implementation software. Rapid prototyping

initially establishes an iterative process between the user and the designer to concurrently

define specifications and requirements for the time critical aspects of the envisioned system.

The designer then constructs a model or prototype of the system in a high level,

prototyping language (PSDL). This prototype is a partial representation of the system,

including only those critical attributes necessary for meeting user requirements, and is used

as an aid in analysis and design rather than as production software [Ref. 7:pp. 2-5].

During demonstrations of the prototype, the user validates the prototype's actual

performance against its expected performance. If the prototype fails to execute properly or

to meet any critical timing constraints, the user identifies required modifications and

redefines the critical specifications and requirements (see Fig. 1). This process continues

until the user and the designer both agree that the prototype successfully meets the time

critical aspects of the envisioned system. A key aspect of the process is the feedback from

the user to the designer. This iterative communication process should result in a model that

will ultimately meet the intended requirements of the user. Following this final validation,

the designer uses the prototype q-s a basis for the design and eventual hand coding of the

production software. The design of large scale Ada software systems typically have

5

particularly strict requirements on accuracy, safety, and reliability. These are difficult to

meet without extensive prototyping. A rapid prototyping environment for creating and

modifying an executable prototype is needed. The PSDL language, its associated

prototyping method, and programming environment apply well to the modeling and design

of hard real-time embedded Ada software systems.

DETERMINE CONSTRUCT

REQUIREMENTS PROTOTYPE

requirements
prototype

requirements DEMONSTRATE SYSTEM

adjustment PROTOTYPE IMPLEMENTATION

Figure 1. Process of Requirements Determination and Validation

B. OBJECTIVES

The objective of this thesis is the development of a conceptual level design for the

Software Base Management System of the Computer Aided Prototyping System. This

conceptual design will be the basis for further research leading to full implementation of the

Software Base Management System.

C. ORGANIZATION

Chapter II will contain a detailed discussion of the role of all the CAPS system

components. A survey of recent work in the area of software reusability with emphasis on

Ada will also be presented. This chapter will also include an overview and survey of

research involved with database management techniques with primary focus being on those

that make use of software libraries, and perform the classification, selection, and retrieval

of software components. The actual conceptual level design for the CAPS SBMS will be

6

presented in Chapter III. Conclusions and recommendations will be presented in Chapter

IV.

7

H. PREVIOUS RESEARCH AND SURVEY OF SOFTWARE

REUSABILITY

A. PREVIOUS RESEARCH

The Software Base Management System is one element of the Computer Aided

Prototype System (CAPS) tool. An overview of CAPS is presented here in greater detail to

provide an overall framework for the Software Base Management System.

1. The Computer Aided Prototyping System

The Computer Aided Prototyping System (CAPS) relies on a number of major

software tools (see Fig. 2) to assist the designer in constructing and executing a prototype.

First, the computer-aided environment includes a Software Base Management System

which creates uniform retrieval specifications for Ada software modules in the software

database and later retrieves these reusable modules for assembling the executable prototype.

Second, a graphics-capable user interface including a syntax-directed editor expedites the

designer's data entry at a terminal and prevents syntax errors in the design. Finally, an

execution support system demonstrates and measures the prototype's performance and

analyzes the accuracy of design specifications. Rapid construction of the prototype relies

on application of the rapid prototyping methodology along with a support environment

which automates the steps involved. [Ref. 8:pp. 2-10]

2. Prototype System Description Language

PSDL was designed as the primary connection between the designer and the

components of the CAPS. By definition, PSDL is a high-level prototyping language with

special features appropria, t for defining critical real-time constraints, and is applied at the

specification or design stage [Ref. 9:pp. 3, 23]. PSDL was specifically designed for the

8

SOFTWARE BASE
DESIGN

SOFTWARE BASE DATABASE
MANAGEMENT SYSTEM

SYNTAXGRAPHICS EDITOR SNA

DIRECTED
EDITOR

USER INTERFACE

TRANSLATOR RCHED_1 I

EXECUTION SUPPORT

Figure 2. Computer Aided Prototyping System

modeling of embedded and hard real-time software. PSDL and CAPS use Ada as an

implementation language. The Department of Defense has mandated the requirement that

the language Ada be used for the design of hard real-time embedded systems. Ada

supports key software engineering principles including software portability and reuse.

However, it is not perfect, nor is it the ultimate in programming languages

[Ref. 10: p. xiv]. Ada constructs do not support real-time modeling directly, while

PSDL constructs do provide effective techniques and tools to specify timing constraints.

PSDL has selected and transformed the good language features of Ada primitive constructs

into a small and simple set of PSDL language constructs, which is convenient for the

designer of the prototype model. It is simpler to describe the structure of a system and the

9

relation between system components in PSDL than in Ada, since PSDL allow, a designer

to express his thoughts and ideas clearly, easily, and significantly faster at a specification or

a design level with notations based on abstractions. The important points are that the

software tools and the prototyping method of PSDL lead to a well structured prototype and

that the resulting PSDL prototype is executable. PSDL components can be mapped into

Ada directly. The methodology involves the use of specification and prototyping languages

during the early design phase, and then use a language such as Ada as the implementation

language for the final product. Ada is a large and powerful programming language. It is a

good underlying programming or implementation language for PSDL. However, it is too

hard and too cumbersome to use as a design language directly. The mapping between

PSDL and Ada and the use of reusable Ada components are the keys to making PSDL

prototypes executable and useful in large Ada projects. [Ref. 7.pp. 51-53]

In order to rapidly construct a prototype, PSDL aids the designer in

systematically refining and decomposing each critical component into its lower level

components. Uniform PSDL specifications associated with each lower level description act

as templates for retrieving reusable Ada software components having similar specifications

from the CAPS software database. Thus, the use of PSDL produces a computational

model consisting of the basic building blocks needed to describe the abstractions and

concepts of the hierarchically structured prototype. The PSDL execution support

environment then verifies the design and the validity of the prototype's real-time

requirements. The actual execution of the prototype model demonstrates whether these

critical timing constraints will perform in an acceptable manner that meets the timing

constraints of the system as a whole [Ref. 7:pp. 2-7]. Complete details concerning PSDL

are provided in Ref. 7.

10

3. The PSDL Prototyping Method

The rapid construction of a prototype in PSDL is made possible by the associated

prototyping method and support environment. The support environment reduces the

efforts of the designer by automating some of the tasks involved in prototype construction.

A PSDL prototype is constructed as a hierarchy of subsystems, referred to as the

components of the prototype. Each component is either a reusable module available in the

software base or is defined in terms of the PSDL computational model. The code of the

prototype usually cannot be used in the final implementation because the prototype is not a

complete representation of the intended system. PSDL was designed to support an

automated environment for rapid prototyping. The most important parts of the environment

are a static scheduler, a translator, a dynamic scheduler, a software based management

system, and a syntax directed editor. The editor can provide a user-friendly interface and

significantly reduce the amount of effort required of the designer. A graphical interface

with a high resolution display and a pointer device is convenient for manipulating the

enhanced data flow diagrams. The purpose of the PSDL prototyping method and its

support environment is the rapid construction of executable prototypes for large real-time

systems. The PSDL prototyping method develops a hierarchically structured design by a

process of stepwise refinement, guided by the computational model and the software base.

In the iterative rapid prototyping environment, the initial version of the prototype

will meet some but not all of the requirements, and will provide an initial structure from

which to work. A prototype is evaluated and tested through execution by the designer.

Once the designer believes that the prototype meets all the requirements, the prototype is

demonstrated for the user. Identified faults are reviewed along with the specifications, and

the iterative process of refinement continues. The advantage of PSDL and its associated

automated prototyping tool is that this iterative refinement process can proceed quickly and

11

ultimately should result in a model of a more reliable system, that the user agrees will meet

the requirements. Hard real-time constraints of embedded systems can be more effectively

modeled using PSDL.

4. Benefits of CAPS

CAPS and the use of PSDL offer the potential of serving as a valuable software

development tool specifically for hard real-time systems. The prototyping process is

speeded up by automation and by reducing the conceptual burden of the analyst and

prototype designer. PSDL was designed to interface to an automated support environment

with a software base containing reusable software components. PSDL has constructs for

recording timing constraints, for defining operator and data abstractions, and for specifying

non-procedural control constraints. The most important aspects of real-time systems

design are enforcing maximum response time and data synchronization constraints. PSDL

handles both of these aspects well. The execution support system allows the designer to

check the feasibility of a set of real-time constraints by monitoring and evaluating the

execution of the prototype model. CAPS offers a software tool that is a most practical way

to support rapid prototyping of hard real-time software systems. This together with the

features of PSDL for large scale software design make it a good candidate for inclusion in

an advanced Ada programming environment. An experienced PSDL user should be able to

construct a prototype significantly faster than an experienced Ada user [Ref. 7:p. 52].

The user can validate the hard real-time system constraints by executing the constructed

prototype. Further research efforts are currently in progress to implement all the subsystem

components of the automated support environment of PSDL.

12

B. SURVEY OF SOFTWARE REUSABILITY

1. Introduction

The concept of software reusability has been the subject of a great deal of

research, especially during the past five years. The repetitive nature of computer

programming would lead one to conclude that many of the same software modules have

been written again and again by different programmers through the years. The potential

benefits and advantages of reusability include the following:

* Increased programmer productivity and efficiency
• Lower overall development costs
" Improved software maintenance and quality
* Faster software development

These potential benefits become larger when reusability is applied to the

development of complex, real-time, and embedded systems, because the intellectual and

development effort that goes into designing and implementing these complex systems is

much larger than for more simple systems. This section of the thesis will review some of

the more significant work which has been accomplished in the area of research of software

reusability. Applicability to the CAPS software base of reusable components will also be

analyzed.

2. Classification and Retrieval

One of the critical issues in reusing software components is the problem of

locating and retrieving them from a large collection. Prieto-Diaz and Freeman note that the

proper classification of reusable software components is central to making code reusability

an attractive approach to software development [Ref. I l:p. 6]. A good discussion of the

Prieto-Diaz and Freeman classification scheme is presented in Ref. 11, and some of the

highlights of that article will now be reviewed. They propose an integrated classification

scheme that is embedded in a retrieval system and supported by an evaluation mechanism.

13

The purpose of the evaluation mechanism is to help users discriminate among very similar

components in the software base, and allow the user to select the components that require

the least amount of conversion effort. Prieto-Diaz and Freeman present the following

algorithm to illustrate the code reuse process proposed in their model [Ref. 11 :p. 7]:

begin
search library
if identical match then terminate
else

collect similar components
for each component

compute degree of match
end
rank and select best
modify component

endif
end.

The components in the software base are described by standard attributes that

capture their functional characteristics. It should also be noted that exact matches are rare

and the retrieved code will most likely have to be adapted and modified to suit the user's

needs. Prieto-Diaz notes that existing classification schemes are usually very general and

are not organized by reusability-related attributes. He proposes a faceted scheme where a

software component is described by a tuple of six terms where each term is an attribute

value of a selected facet. Classifying a component consists of selecting the sextuple that

best describes the component. Each component is described by a sextuple that is maintained

in a relational database system. The evaluation mechanism allows the user to select the

attributes which are most important, which will then be used with metrics in the evaluation

process. Prieto-Diaz has conducted some preliminary testing of his model on a small scale

with favorable results. It appears to offer a promising approach to reusability. Some of the

classification concepts and software base management issues presented by Prieto-Diaz and

Freeman have applicability to CAPS, and future results of their work are worth reviewing

for potential applicability to the CAPS Software Base Management System.

14

3. The Graphical Object-Structured Editor

A different approach to reusability is presented in a system known as the

Graphical Object-Structured Editor (GOEDIT) [Ref. 12]. This editor combines some

features of a classical syntax-directed editor and integrated programming environment, in

order to perform some operations on a software base consisting of software object

modules. The goal of GOEDIT is to provide an automated environment for rapid

prototyping system ideas including reusability. All the software modules in GOEDIT are

treated as objects, with each class of objects being indicated by a text icon. A programmer

will select one of the particular icons and then browse through all the instances within that

class. This system has a number of deficiencies as the user must browse through all the

instances of a class until he finds what he is looking for. As the software base gets larger,

this will result in a lot of wasted time. Preliminary testing of the system found that it was

useful for experienced programmers who were familiar with the icons and contents of the

software base, but the system was not very useful for a programmer who was unfamiliar

with the organization and nomenclature of the software base. The developers of GOEDIT

also do not make clear exactly what criteria or methodology is used to classify the different

software modules in the software base.

4. The Reusable Software Library

Noteworthy work has been accomplished at Intermetrics, Inc in the development

of a Reusable Software Library (RSL) [Ref. 13]. The RSL consists of the RSL database

and four subsystems:

0 Library Management

* User Query

* Software Component Retrieval and Evaluation

* Software Computer-Aided Design

15

The foundation of the RSL is the software base which stores the attributes of

each reusable software component. Originally, Intermetrics used up to as many as 60

possible attributes in describing and classifying a software component. This was later

shortened to 14 attributes. The overall classification strategy was very similar to the one

used in standard mathematical libraries, with the use of broad categories such as math

functions, data structures, sort and search routines. The interesting component of the RSL

is the Software Component Retrieval and Evaluation (SCORE) subsystem. SCORE is an

interactive system that helps the user select the most appropriate software to reuse by

identifying components that perform the function requested by the user. SCORE will

present the user with an ordered list of recommended components. The key part of

SCORE's evaluation process is the identification of the software application domain.

When the user invokes SCORE, he is prompted to specify the application domain and to

indicate the relative importance of each of the different software attributes. SCORE will

search the software base and ,valuate and rate the software components against the user

specified needs. This method of evaluating components is very similar to the method

proposed by Prieto-Diaz and Freeman as discussed previously. One of the deficiencies in

this system occurs in the objective assignment of ratings to the attribute values of each of

the software components. This is especially true in more complex application domains.

The RSL places a great deal of importance on the role of the software base librarian, who is

solely responsible for the proper classification and entry of components into the software

base. Some type of standard technique would be needed to help librarians in maintaining

consistency in rating the attributes. The emphasis on application domain may serve to limit

flexibility in the software base. A similar module may belong to a number of different

application domains, and it would be inefficient to store that same module in a number of

different areas.

16

Goguen also stresses the use of application domains and notes that the

organization and cataloging of a library of reusable software components is a very difficult

problem [Ref. 14:p. 26]. One possible approach that he recommends is to use a

hierarchical classification scheme with the use of keywords. At the highest level, the

keywords might be organized by application domain. The lowest levels of the

classification hierarchy might contain descriptions of program properties in forms more

readable by machines than users, which Goguen feels might support a sophisticated search

capability.

5. Software Factories

In this country there has been a reluctance and resistance to the actual

implementation of software reusability. The Japanese have instituted the concept of a

"software factory" and have achieved remarkable rates of reusability, exceeding 50 percent,

with productivity gains of 20 percent per year [Ref. 15:p. 159]. The concept of software

reuse is a key component of the factory organization, which actively promotes reusability.

Matsumoto reports on an experimental, object-oriented retrieval system that is currently

being developed [Ref. 15:p. 174]. This retrieval system is also a simple keyword based

system, that will make use of a synonym library to provide a standard normalized keyword

from the user input. Attempts are being made to make this system an interactive,

knowledge-based type system. If software reusability is to be a success in the U.S., then

greater corporate level emphasis will be required along with a restructuring of the software

organization to support reusability. Freeman introduces the concept of "reusable software

engineering," which has as an objective the broad reuse of all information generated in the

course of development, including code reuse, design reuse, specification reuse, test plan

reuse, and application model reuse [Ref. 16:p. 6]. The goal of a future software parts

17

technology is the development of a programming environment in which reusing code is the

norm, and not the exception [Ref. 17:p. 130].

6. Object-Oriented Programming and Reusability

Johnson and Foote make an argument that object-oriented programming

promotes software reuse [Ref. 18:p. 22]. One of the reasons that object-oriented

programming is becoming more popular is that the concept of software reusability is

becoming more important. As discussed by Johnson and Foote, object-oriented

programming languages encourage software reuse in a number of ways. Class definitions

provide modularity and information hiding. Late binding of procedure calls means that

objects require less information about each other. In the context of object-oriented

programming, polymorphism refers to the capability for different classes of objects to

respond to exactly the same set of messages. A polymorphic procedure is easier to reuse

than one that is not polymorphic, because it will work with a wider range of arguments.

Class inheritance permits a class to be reused in a modified fo, by making subclasses

from it. Modularity makes it easier to understand the effect of changes to a program.

Polymorphism reduces the number of procedures, and thus the size of the program that has

to be understood by the maintainer. Class inheritance permits a new version of a program

to be built without affecting the old version.

Johnson and Foote note that the Smalltalk community practices reuse very

successfully. The keys to successful software reuse are attitude, tools, and techniques.

Smalltalk programmers actively seek to borrow system classes or classes invented by other

programmers. They expect to spend as much time reading old code to see how to reuse it

as writing new code. The Smalltalk programming environment includes a number of tools

that make it easier to reuse classes, including a browser and cross reference tools.

18

Meyer and Interactive Software Engineering Inc. have developed an environment

for reusability known as "Eiffel," that places heavy emphasis on the use of abstract data

types and object-oriented design. Meyer defines object-oriented design as the construction

of software systems as structured collections of abstract data-type implementations. The

Eiffel language and environment consists of a design methodology, a library, and a set of

supporting tools. The Eiffel library provides the basic building blocks and consists of a set

of classes that implement some of the most important data structures. Inheritance plays a

central role in the Eiffel environment and the language supports multiple inheritance, which

is used heavily in the basic library. Eiffel implements some of the concepts of object-

oriented programming with inheritance. Most of the existing object-oriented languages

such as Simula and C++ support only single inheritance, while Eiffel supports multiple

inheritance. [Ref. 19]

7. Reusability and Abstraction

One of the dominant themes that a number of different researchers agree with is

that greater use of abstraction results in greater reusability. Abstraction and reusability are

two sides of the same coin [Ref. 20:p. 37]. Parnas notes that information hiding and

abstraction are key to the development of software that is well-defined and well-

documented, which lends itself to reusability [Ref. 21:p. 240]. Parnas feels that by

developing and cataloging software modules based on abstractions, we can greatly increase

the likelihood that some of the software we write can be reused. Booch notes that the way

to solve a complex software problem is to break it down into smaller, more manageable

component objects [Ref. 22:p. 2]. According to Booch, by composing large systems in

layers of abstraction from smaller systems that we know are correct, the user can feel

confident in the correctness of the entire system.

19

Booch proposes a framework for classifying reusable components that can be

divided up into three major groups of abstractions: structures, tools, and subsystems. A

structure is a component that denotes an object or class of objects characterized as an

abstract state machine or an abstract data type. A tool is a component that denotes an

algorithmic abstraction targeted to an object or class of objects. A subsystem is a

component that denotes a logical collection of cooperating structures and tools. Booch's

taxonomy of reusable components is reviewed thoroughly in Ref. 22 and is illustrated in

Figure 3.

Stacks
Strings
Queues

Monolithic Dequeues
Rings
Maps

Structures Sets
Bags

Reusable Polylithic Lists
ReusableTrees

Software Graphs
Components

Utilities
Filters

,Tools Pipes
Sorting
Searching
Pattern

Match
Subsystems

Figure 3. Booch Taxonomy

20

Booch's taxonomy of reusable components has become quite popular and there

are a number of government agencies that are currently using the components in a library

format. Booch mentions the need for a powerful data model, such as a relational database,

to handle the difficult problem of component retrieval. Currently, the Booch library is

maintained in a catalog type format and is not integrated with any type of database

management system.

IBM has conducted work that relied heavily on abstraction in its development of

a library of software "building blocks" [Ref. 23]. This particular library is oriented

towards the general domain of systems programming. The IBM library contains typical

abstract data type building blocks such as a stack, queue, list, and map, in addition to

procedural building blocks such as message handlers and command parsers. It is

interesting to note that preliminary testing has indicated that abstract data types are not as

predominant in actual project use as IBM expected them to be. IBM also encountered a

great deal of resistance on the part of programmers to use the reusable building block

modules. The whole experiment has served to indicate to IBM the difficulties that are

associated in trying to implement reuse technology in an organization that has been

developing software in accordance with longstanding, proven methodologies.

8. Object-Oriented Design

Object-Oriented Design (OOD) is a new concept that will take some time for

software system designers to get used to. Ada is considered an object-oriented language

although it is not as object-oriented as Smalltalk and Simula since it does not support the

principles of classes or inheritance. Ada was designed to be used primarily in embedded,

real-time system applications. The older software system design methodologies such as

Structured Analysis and Structured Design are intended primarily for non-real-time

applications [Ref. 24:p. 1]. Ada is a relatively new language and was designed to include

21

the most recent advances in software engineering technology. These advances include such

concepts as abstraction and information hiding. These desirable properties can best be fully

utilized using the new concepts and methodologies of Object-Oriented Design (OOD). Ada

software development efforts will result in a high quality software product if we choose to

make full use of the OOD development methodology, as it best enables us to easily exploit

the software engineering concepts embodied in Ada. With the exception of OOD, any

existing software development methodology will have to be modified to some extent before

it can be used for an Ada software development effort [Ref. 24:p. 2]. As the concepts and

methodologies of OOD continue to mature, software system designers will acquire more

and more expertise in its use and will most probably develop their own personal libraries

consisting of Ada software object components. These libraries should provide a good base

from which to construct a formalized Ada software object database that can be used within

the CAPS software rapid prototyping framework.

OOD has already been successfully demonstrated on a number of different

projects in the defense industry. This author recently attended a briefing by personnel from

FMC Corporation, who successfully used OOD throughout the entire design and

implementation efforts for the development of embedded software for the control system

for the Bradley Fighting Vehicle. OOD has also been successfully used by General Electric

in its Satellite Tracking System contract, and also by Ford Aerospace on an application

involving 30,000 lines of code. [Ref. 25]

Here follows a brief overview of the Object-Oriented Design methodology as

described by Booch [Ref. 22] and outlined by EVB Software Engineering, Inc. [Ref. 24].

OOD is a methodology which is used primarily during the design phase of the software

development cycle and it deals with high level abstract objects and operations. It follows

22

the object orientation encouraged by such languages as Smalltalk, Simula, and Lisp.

Booch states that

...object oriented development is an approach to software design in which the
decomposition of a system is based upon the concept of an object. An object is an
entity whose behavior is characterized by the actions that it suffers and that it requires
of other objects. A program that implements a model of reality may thus be viewed
as a set of objects that interact with one another. [Ref. 22:p. 12]

OOD is a hardware/software analysis and design method based upon data

abstraction in which systems are composed or decomposed into a network of object

modules. Real-time systems are viewed as a set of "black box" objects sending and

receiving messages. They are also event driven systems where timing constraints and

response times are of critical importance. Preliminary experience with the use of OOD on

real-time systems has shown that there is a great similarity of objects used in different

systems. Many of them seemed to be part of some type of control system managing timing

constraints between the different objects making up the control system. This would imply

that real-time Ada software development efforts using OOD have a greater potential for

reusability, and also that many of these Ada software objects would be good candidates for

an Ada software object database that could be incorporated within a prototyping tool such

as CAPS.

As an object-oriented methodology, OOD is different in both approach and

results from the traditional functional decomposition and software modeling

methodologies. Object-oriented approaches do not seek to break a large problem into

smaller, more solvable pieces. Instead they identify those objects and operations in the real

world which must be manipulated to effect a solution to the user's problem. They deal

with these items at a high level of abstraction, without regard to their low-level

implementation. Meyer defines OOD as the construction of software systems as structured

collections of abstract data type implementations, with every module built upon the use of

23

data abstractions [Ref. 19:p. 59]. OOD approaches do not construct models of the

objects, but rather describe how the operations and the objects will interact in the proposed

solution to the user's problems. With their emphasis on abstraction and information

hiding, object modules should be easier to maintain and understand. These same

characteristics should also contribute to reusability.

9. Ada and Reusability

Ada was originally designed to support the development of large programs

composed of reusable software components. Each Ada compiler that is produced in

industry must first be validated by the government. This validation ensures that there will

not be any supersets or subsets of the language, and makes Ada an excellent language upon

which to build a library of reusable components. Ada supports reusability in several ways,

as discussed in Ref. 12. Ada has a rich variety of program units such as subprograms,

packages, and tasks, all of which have their own syntactic interface specifications. These

specifications determine how to build composite program structures and specify how those

units may be reused. Ada separates the interface specification of a program unit from the

implementation body. This type of information hiding provides good support for

reusability. Both specification and implementation body can be reused. Ada's strong

typing supports the waterfall model in the software life cycle, providing software

reusability in a stepwise manner. One of the key features of Ada that supports reusability is

the package concept which is a mechanism whereby one can define an abstract data type.

Another key feature is the generic procedure. In some other languages you may have to

write a separate routine to handle operations on elements which are different data types.

With Ada generics, you don't have this problem. The design of Ada attempted to

incorporate the more advanced software engineering concepts. While the language is large

24

and has some problems, it is still a powerful language and should provide good potential

for reusability.

10. The Ada Software Repository

The Ada Software Repository (ASR) [Ref. 26] is a repository of Ada programs

and software components that has been established on the Defense Data Network since

1984. The ASR is a public-domain collection which serves to provide a free source of Ada

programs and information. The ASR is organized into different high level application

categories such as artificial intelligence, communications, and software development tools.

If a programmer desires to use one of the programs available in the ASR, he must scan

through the index, and then scan each of the programs within the application area he is

interested in. This type of catalog listing of reusable software is typical of most current

reusable software libraries. Finding a component is a time-consuming process. The Air

Force is currently working on a database management interface to the ASR, which is to be

based on a relational model using SQL. Although some of the Ada components within the

ASR may be useful to include within a CAPS software base, the majority of items in the

ASR are large, application-specific tools, that cannot be used by CAPS in a hard, real-time,

rapid prototyping environment.

11. The Common Ada Missile Packages (CAMP) Project

The CAMP project was initiated in 1984 by the Software Technology for

Adaptable, Reliable Systems (STARS) Joint Program Office [Ref. 27]. The series of

contracts associated with the CAMP project were performed by McDonnell Douglas

Corporation. The purpose of CAMP was to demonstrate the feasibility and utility of

software reuse for real-time embedded systems. A software parts library was constructed

consisting of 452 operational flight software components for missile systems. The 452

CAMP software parts ranged in size from 10 to 100 Ada statements, and implemented

25

various missile operational flight functions. For the purposes of the CAMP project, a part

is defined as a package, subprogram, or task usable in a stand-alone fashion. In other

words, they may use or be used with other parts, but they do not depend on other

packages, subprograms, or tasks encapsulated with them to perform some function.

CAMP uses two approaches to parts identification: application and architecture. It uses an

interactive expert system shell that guides missile software system designers through the

software construction process. Several knowledge bases are used to contain information

about Ada programming and the missile systems architecture. From September 1985 to

May 1988, the CAMP parts were distributed to over 125 government agencies and

contractors by the Ada Joint Program Office. The net result is that the CAMP project has

been successful in demonstrating productive software reuse in building actual real-time

embedded systems. The parts are now being considered for numerous government

systems including NASA's space station, the advanced tactical fighter, and other new

aircraft and missile systems. The CAMP software parts are available for limited

distribution to government agencies. The parts should make excellent candidates for

inclusion within the CAPS software base.

12. Summary

There has been a great deal of work done in the area of software reusability and

much still remains to be accomplished. A number of different approaches have been tried

in attempting to find the most appropriate method to classify software components, and to

find a methodology for their efficient storage and retrieval from a software base. The

integration of a classification, storage, and retrieval mechanism within an advanced

software development tool would serve to greatly enhance software reusability. The

development of a Software Base Management System for CAPS, consisting of reusable

Ada components, specifically addresses these issues.

26

III. CONCEPTUAL DESIGN FOR THE SOFTWARE BASE

MANAGEMENT SYSTEM

A. THE SELECTION OF A DATABASE MANAGEMENT SYSTEM FOR

THE CAPS SOFTWARE DATABASE

1. Relational, Hierarchical, and Network Database Management

Systems (DBMS)

There are a number of existing database technologies that were evaluated for

inclusion into the CAPS environment. The SBMS will play a crucial role in the prototype

development process as the rate of successful retrievals will directly impact the productivity

rate of the designer. Current database management systems have a number of

characteristics that negatively impact efficiency and productivity. These characteristics

include the following:

• fixed set of structures and operations

* limitations of a fixed set of predefined types
• redundancy of data

* lack of abstraction capabilities

• schema not easily modifiable

Database management systems based on the hierarchical, network, or relational

data models are characterized by a fixed set of structures and operations. Application

programs must be written to interpret the data and implement the structures and operations

not in the fixed set. The traditional table-oriented data model of relational database systems

impose limitations and constraints as the designer is restricted to use a fixed set of

predefmed types. Another characteristic of relational models is a redundancy of data, as a

separate physical structure is needed for each different view of the data. In the relational

27

model, the database schema is represented as an unstructured set of relations. This is fine

if there are only a few relations in the schema but problems occur if there are many

relations. The relational model has proven to work well for certain specific applications

such as bank account systems and university student information systems. However in

more advanced complex applications, the designer requires more flexibility. The

hierarchical and network data models are powerful but they also lacked abstraction

capabilities. You have to have a picture of the hierarchical structure in your mind always in

order to effectively use these models, which is very difficult to do if the schema is large and

complex. Once the schemas are in place, they remain fairly static and are not easily

modifiable.

2. Object Technology

A relatively new database management technology is currently emerging and is

focused on the concepts of object-oriented programming languages. These new object-

oriented database management systems are specifically being targeted to meet the data

management requirements of "complex data and process intensive applications" [Ref. 28].

Examples of complex data and process intensive applications include:

* computer aided design
• computer aided software engineering
* computer integrated manufacturing
" computer aided rapid prototyping.

All of these applications have in common large, complex, and highly interrelated

data objects. Most of the operations associated with the data objects are also complex and

are performed through the use of tools. Object-oriented DBMS's (OODBMS) represent the

next natural step in the evolution of DBMS's. They attempt to provide facilities to define

any structure and operation the user may want, not just a fixed set. This flexibility is a

main advantage of OODBMS's. Since these applications are very complex, a main

28

objective of OODBMS's is to increase designer productivity. Abstraction is also an

important capability as a very large amount of data with complex relationships cannot be

manipulated by a set of complex operations unless extensive abstraction mechanisms are

available.

Currently, there is not total agreement within the database community as to

exactly what an object is. Each different system that comes out has slight variations as to

the definition of an object. A discussion of the most common descriptions of an object

follows, as discussed in Ref. 28. An object is a description of an entity in an application

domain. It can be something as simple as an ordinary number, or something as complex as

the assembly of parts that make up a ship or submarine. It also can be the text that makes

up a software module. An object has a unique system defined identifier and a set of

operations that are defined on that object. Objects which are similar are classified into

classes. A class defines the property names and operations of similar objects it represents.

A class itself is also viewed as an object. Class objects, as instance objects also have

properties, operations, and identities. The notion of class hierarchy and inheritance of

properties along the class hierarchy is another characteristic of the object-oriented data

model. All subclasses of a class inherit all properties defined for the class and can have

additional properties local to them. Abstraction (generalization) imposes structure on the

set of classes and allows irrelevant details to be ignored. Another form of abstraction called

composition, is the building of large objects using small objects. The large object is an

assembly or a composite object, and the small objects are components. Examples include

some of the large software object modules, which are composites that are made up of

atomic component object modules.

3. Properties of OODBMS

Listed below are the more significant properties of an OODBMS:

29

* persistency

* active data
* extensibility

* abstraction

The fundamental properties of an OODBMS are that they must support

persistency, which means that the data objects must be non-volatile while maintained within

the database. OODBMS's must also support the concept of active data. The OODBMS

must have an extensible set of data structures and an extensible set of operations.

Extensibility means that the set of operations and structures available to database designers

and users is not fixed and can be extended to meet user requirements. One other

fundamental property as mentioned previously is abstraction, which includes the concepts

of object composition, classification, generalization, and encapsulation. As a database

management system, an OODBMS must provide the standard database functions of

concurrency control, recovery, transaction management, and security. The object-oriented

data model upon which the OODBMS is built provides the designer with an expressive tool

for representing his objects and has the advantages of understandability, simplicity, and

accessibility.

It is important to note that OODBMS's are very new and a great deal of debate

and research is going on currently to determine how best to merge the concepts of object-

oriented programming languages with database management technology. There currently

are only a handful of commercially available OODBMS's and those that are available have

not yet fully demonstrated all the fundamental concepts and theories of OODBMS's as

outlined in the paragraphs above. However for the complex data applications of computer

aided rapid prototyping, the use of an OODBMS for the software object database is most

appropriate. It will represent a new approach to the problem of managing software

databases.

30

B. THE SOFTWARE DATABASE

As discussed in Chapter II, the Software Base Management System (SBMS) will

provide a mechanism that will enable the software system designer to successfully retrieve

reusable Ada components during the rapid prototype development process. The first issue

that must be dealt with in attempting to design the SBMS is the content of the database

itself. In order to promote reusability and some form of structure and organization, the

components that make up the database must all be inserted in accordance with a set of

guidelines and prescribed criteria. The method that this author proposes is that the software

database will consist of "objects," which will represent PSDL specifications, Ada software

components, and associated methods that will be used to manipulate the data within the

object. A more complete definition and discussion of just what an "object" is within the

framework of the CAPS software base will be presented later in this Chapter. The Ada

software module within the object should be a product of the Object-Oriented Design

process, as described by Booch in Ref. 10. Not all Ada modules would be acceptable to be

stored within the CAPS software base. Atomic level components which have been

designed in accordance with the principles of OOD offer the greatest potential for

reusability, and are recommended as the types of modules which would offer the greatest

potential for successful use within the CAPS prototyping process. This is further

explained in the next section.

1. Applying OOD to the CAPS Software Base Components

The application of OOD to the software base refers only to the design of the Ada

code itself, which is just one of the attributes of an "object" in the CAPS software base.

The full definition of an object in the CAPS software base includes the PSDL specifications

and the operations (methods) on the object. (This full definition is given in Paragraph C. 1

on page 35). The use of Booch's Object-Oriented Design methodology in developing Ada

31

software modules is highly recommended as being the most beneficial approach to be used

in developing a software database for CAPS. This is because the OOD methodology places

emphasis on developing highly cohesive and loosely coupled object modules using a high

level of abstraction. To best support the rapid prototyping process, the Ada component

modules must be at an atomic level with no interconnections or dependencies on other

modules within the software base. Each module will be self-contained and will perfcrm a

specific function while processing a number of inputs and outputs. A major characteristic

of these modules is that they will perform the required function or operation within

specified timing constraints. As discussed in the survey in Chapter II, the 452 parts that

make up the software library in the Common Ada Missile Package (CAMP) project would

be excellent candidates for inclusion within the CAPS software base. These parts are all

stand-alone modules that do not depend on other packages or subprograms to perform their

specified function. While applying the OOD methodology to the CAPS software base

components, there is a greater potential to achieve the following benefits:

" reducing complexity
• improving reliability
* enhancing maintainability
" encouraging object module reusability

According to Berard of EVB Inc, module coupling and module cohesion are

addressed virtually automatically when using OOD. When applied correctly, OOD will

almost always result in modules which are highly cohesive (performing a single specific

function) and loosely coupled (weak interconnection between modules). The best

examples of Ada software object modules are contained in the books by Booch (see Refs

10 and 22). Another example is the case of the typical real-time control system such as a

Weapons Controller, which is illustrated in Figure 4. The components of the Weapons

Controller include the control panel, missile, gun, and radar sensors. Each cf these

32

components in the Weapons Controller is represented by an object or abstract data type,

which is an Ada software module that consists of an encapsulation of data and the

operations on the data. Each component object module sends messages to the other object

modules utilizing the Ada interface specification for the module. The interface specification

is the only way to gain access to an object's data and its operations. The details of how the

Ada object module implements the operations of the Weapons Controller components is

hidden within the Ada abstract data type representation for each component

Control oPanel Input

System oPanel Output

Gun Control Input Weaon Sensor Input Ra r
System 0 SenssoJ adrs

CotrlOutput Sensor Output I

Missile !Control Input /

Systm Control Output

Figure 4. Weapons Controller

Within the Department of Defense, military weapons systems for the Army,

Navy, or Air Force, all share similar components in that there is some type of control

system that is monitoring inputs and sensors, while controlling the operation of some type

of weapons delivery platform. These platforms can be based on land (such as a tank), sea

(ships), or air (aircraft). Using Ada and the OOD methodology, there is a distinct potential

33

for reusability of some of these common objects shared by each of these systems. Some of

the more common object modules included in many systems include buffers, device

drivers, sorting routines, mathematical functions, and input/output of different data types.

Each of these should be encapsulated within generic packages and instantiated as required.

In Figure 4, the Weapons Controller can have many different component object modules

associated with its different functions. One specific operation is the start-up operation

which is modeled with the Ada object module listed below:

PROCEDURE controller_startup (control_panel : IN real;
sensor input: IN real;
missilecontrol : OUT real) IS

enablesignal : real;
BEGIN

enablesignal := calculate controllevel (controLpanel,
sensorinput);

missilecontrol := enablesignal;
END controler_starLup;

"Object oriented design is, in its simplest form, based on a seemingly elementary

idea. Computing systems perform certain actions on certain objects; to obtain flexible and

reusable systems, it is better to base the structure of software on the objects than on the

actions." [Ref. 19:p. xiv] It should be stressed that software engineers should use pre-

existing, proven Ada software objects when implementing code for any Ada program unit.

Reusability is a key issue in the development of Ada software. Ada software objects

should be designed with reusability in mind. OOD is still a fairly new concept but early

results seem to indicate that it has the potential for significantly improving the quality of

production software.

Methodologies such as Structured Analysis and Structured Design were created

when most applications were not real-time. Also, when using the older design

methodologies, software designers still had to address issues such as module coupling,

module cohesion, and module size. It has also been found that large software applications

34

L

developed using Ada and OOD often require substantially less source code than

applications developed in the more traditional languages. The larger the software product,

the more pronounced this effect becomes [Ref. 24:p. 1-8].

As the OOD methodology matures and the defense contractors acquire more

experience in using it, they should be able to begin to recognize and exploit object

reusability. DOD can also aid the process by specifying in its contracts that the contractor

address OOD and reusability. Perhaps an award fee incentive can be provided for the

contractors that can demonstrate that they have been able to reuse object modules from

previous contracts. The net result should ultimately lead to eventual cost savings.

C. THE DESIGN OF AN OBJECT-ORIENTED SCHEMA FOR THE CAPS

SOFTWARE BASE

1. Introduction

An "object" is an entity that represents a package of information and descriptions

of how to manipulate the information or data within the object. Objects combine the

properties of procedures and data, which is in contrast to conventional programming which

uses separate procedures and data. Within the CAPS software base, an object consists of a

number of attributes or properties which are the PSDL specifications for an Ada software

module. The Ada code itself for the module is also one of the properties of the object. All

of the action in an object-oriented system comes from sending messages between objects.

Objects respond to messages using their methods to perform operations on the object. This

message sending process supports the principle of data abstraction. The message describes

what the programmer wants to happen, and does not get involved in the details of exactly

how it should happen. From the outside, a programmer can only ask the object to do

something by sending it a message. The method, which is internal to the object, contains

all the details of how the the object's information is to be manipulated. The important thing

35

to note is that methods cannot be separated from the object. An example of some of the

types of methods that will be associated with an object in the CAPS software base are

operations to display object properties, operations to search through instances of a class

looking for specific values, and operations to add, delete, or modify property values. The

details of some of these operations will be discussed in the following sections of this

Chapter. This thesis will attempt to demonstrate that the use of an object-oriented database

management system for the CAPS software base is the best approach that can be utilized.

Through the use of an object's internal methods (operations), great flexibility and power is

provided in performing complex operations on the data contained within an object (PSDL

specifications and Ada code).

2. PSDL Specifications and Ada Software Modules

A uniform set of PSDL specifications must be associated with each Ada software

object component module that is in the software database. Each specification will be the

primary means by which a reusable Ada software component will be retrieved from the

database. The reusable components in the software base are used to construct subsystems

of the prototype, and the available reusable components are used to guide the

decomposition process by which the behavior of the prototype is refined. There are a

number of attributes associated with each PSDL specification for an object module,

however each attribute may not necessarily have a value associated with it for a specific

module. Ada software object component retrieval based on partial matches of specified

subsets of these attributes will be a key function of the SBMS. PSDL serves as the link

between the software prototype system designer and the software base. When the designer

gives a decomposition for a composite module, the behavior of each part of the composite

module is given in the form of a PSDL specification. Further decomposition of a module is

attempted only if the retrieval from the software base fas. The SBMS does the retrievals

36

based on approximate matching of the object module template with the specification parts of

each of the objects in the software base. This is accomplished through the methods

associated with the objects in the software base. For example, a method on a class of

objects can search through each instance of the class looking for specific PSDL property

values. The method can be written to return only exact matches or to return modules that

have partial matches of just some of the PSDL specifications.

3. Software Base Classification Scheme

In object-oriented technology, a class is a description of one or more objects that

are similar. Also, each object described by a class is called an instance of that class. The

class describes all the similarities of its instances. Each instance contains information about

the object that distinguishes it from the other instances or objects in the class. The methods

that describe an object's response to messages is found within its class. All of the

instances (objects) of a class use the same methods to respond to particular messages. The

class itself is also an object. A class serves several purposes. It provides the description of

how objects behave in response to messages, and it also provides an interface for the

programmer to interact with the definitions of the objects. [Ref. 29:p. 78]

Within the CAPS software base, there are two primary classes that represent the

two different kinds of PSDL components that exist. Each Ada software module component

can be classified as either a PSDL "operator" or PSDL "type." PSDL operators are

normally implemented in Ada as functions, state machines, and packages. The

specification part of the PSDL operator contains attributes describing the form of the

interface, the timing characteristics, and both formal and informal descriptions of the

observable behavior of the operator. The attributes both specify the operator and form the

basis for retrievals from the software base. Each instance in the class of operators or types

is an object which is distinguished from every other instance in the class by the different

37

values associated with each of the properties (PSDL specifications) of the object. The

following is a listing of possible attributes associated with a PSDL operator:

* NAME, INPUT, OUTPUT, MAXIMUM EXECUTION TIME,
" MAXIMUM RESPONSE TIME, MINIMUM CALLING PERIOD,
* EXCEPTIONS, INITIAL STATE, GENERIC, STATES,
" DESCRIPTION, PERIOD.

PSDL types correspond to Ada abstract data types and are normally implemented

as Ada packages. A PSDL type can also be specified as a PSDL operator. The attributes

that make up PSDL types are:

* NAME, GENERIC, OPERATOR NAME

It would be the function of the database administrator to insure that each Ada

software object module is properly classified with values assigned to each of the attributes

as appropriate. In the rapid prototyping environment, the database administrator role will

most probably be fulfilled by the prototype designer, as he may have to write object

modules for insertion into the database based on unsuccessful searches of the software

object database.

4. Mapping of PSDL Specifications to Ada

Each Ada software module in the software base is uniquely identified by its

associated PSDL specifications. Some of the modules may have the same name, but they

will be distinguished from each other by differences in the values for their specifications.

An example of a mapping of a PSDL specification to its associated Ada module is

illustrated below. Additional examples of PSDL specifications and their corresponding

Ada modules are included in Appendix A.

PSDL SPECIFICATION
OPERATOR controller_start_up
SPECIFICATION
INPUT control-panel : real, sensor_input : real
OUTPUT missile_control : real

38

BY REQUIREMENTS startup time
MAXIMUM EXECUTION TIME 90 ms

BY REQUIREMENTS controLpanel-max
DESCRIPTION
{ Extracts the control panel input and sensor input and
uses them to calculate control signal to missile.I

END

ADA MODULE CORRESPONDING TO ABOVE SPECIFICATION

WrTH weaponscontrollerpackage;
USE weapons controller_package;
PROCEDURE controller_startup (control-panel : IN real;

sensor-input : IN real;
missilecontrol: OUT real) IS

enablesignal : real;
BEGIN

enable_signal := calculatecontrollevel (controLpanel, sensorJnput);
missilecontrol := enable-signal;

END controller_startup;

5. The Formation of the Software Base Schema

Recognizing the fact that the majority of rapid prototyping applications will

involve military real-time embedded systems, the software base schema should be designed

to most efficiently support the development of these hard, real-time systems. It is

anticipated that the size of the software base will be quite large, therefore the software

objects should be managed so that they can be stored and retrieved easily in accordance

with the needs of the prototype developer.

The schema that is proposed for the CAPS software database is based on the

object-oriented data model [Ref. 30:pp. 1-10]. The first step in the development of an

object-oriented software base system is the specification phase and focuses on the schema

formation. This phase has several goals as listed below:

• Identify and define the objects
• Identify and define any class hierarchy among the objects

* Specify the properties associated with each object
• Specify the frequent operations performed on the objects

39

A preliminary discussion of what an object is in the CAPS software base was

discussed in Section C.1 of this Chapter. The objects in the CAPS software base are all

components consisting of PSDL specifications to identify associated Ada modules. There

is a class hierarchy among these components as the Ada modules can be specified by either

PSDL operators or PSDL types. Although this serves to present a simple identification of

the categories in the CAPS software base application domain, it should be noted that there

will be many object instances associated with each category or class. This class hierarchy

is illustrated below (see Figure 5):

COMPONENT

Figure 5. CAPS Software Base Class Hierarchy

a. Object Properties in the Software Base

The properties of the objects in the CAPS software base serve to uniquely

identify each of the objects. The properties also can be used to model the state of an object

as they describe the associations or connections between the objects. The properties of the

objects are the PSDL specifications that define the class of operators or types. One of the

properties for each operator or type is the Ada code module associated with the PSDL

specifications. One of the major characteristics of object-oriented systems is the concept of

inheritance. In general, if all the subclasses of a class define the same property, then that

40

property should be "factored out" to the superclass. The superclass will define the property

so the subclasses can inherit it. Inheritance provides for the easy creation of objects that are

almost like other objects. Inheritance reduces the need to specify redundant information

and simplifies updating and modification, since the information only has to be entered and

changed in one place. In the CAPS software base, the properties "name" and "generic" are

two properties that can possibly be assigned to the Component class. Each of these values

can then be inherited by the subclasses, Operators and Types. A type definition language

called TDL, which is part of the Vbase Object-Oriented Database Management System

[Ref. 30], will be used at the end of this section of the thesis to illustrate the classes and

properties discussed thus far.

b. Object Methods in the Software Base

The next step in schema formation is to identify the frequent operations

performed on the objects. To perform operations on the objects in an object-oriented

system, messages must be sent by the application programmer to initiate an object's

methods. Objects can also send messages to other objects to initiate action. Objects

respond to messages using their methods to perform operations on the object. While

properties are used to model the relationships between objects, the methods are used to

access or modify the relationships and properties. A designer of an object-oriented system

has the capability to model any complex form of object manipulation that may be desired.

This is an extremely powerful capability and is one of the most favorable aspects of an

object-oriented system. This thesis will identify some of the simple and complex methods

that will be necessary to operate a productive Software Base Management System for

CAPS.

The types of object operations that will be required for CAPS are those that

will assist the prototype designer in quickly locating a suitable component for use in the

41

rapid prototyping process. Due to the fact that exact matches of PSDL specifications with a

software base component will be rare, the designer needs assistance from the Software

Base Management System to find alternate components that meet some of the specified

designer requirements. The ideal situation is for the Software Base Management System to

return a prioritized listing of components that the designer can then browse to make a

selection of the one that most nearly satisfies the requirements. This type of operation is

possible to program in an object-oriented system and will be demonstrated later in the

implementation section of this thesis. Some of the simple and complex operations that are

being proposed for the CAPS Software Base Management System are listed below:

" Operations to display an object's properties
* Operations to perform a search through a class of objects, looking for specific

property values.
* Operations to perform an analysis of object property values, such as evaluating the

number and types of input and output parameters associated with a PSDL
specification

• Operations to create and delete instances of an object
• Operations to add, delete, or modify the property values associated with an instance

of an object
" Operations that will establish a relationship between objects such as a "part of'

relationship
" Operations that will search through instances of a class and return components that

only partially match the specified designer requirements

Future enhancements and the addition of more complex operations can

easily be performed by the Software Base Management System designer. It would involve

only the re-compilation of the software that implements the schema in an object-oriented

language or system.

42

c. Using An Object-Oriented Language to Define the Software

Base Schema

To illustrate how a CAPS software base object can be defined in an object-

oriented system, an example using the Vbase Type Definition Language (TDL) is provided

below:

define type Operator

supertypes = (Component);

properties =(
Name: String;
Inputs : distributed set[Input];
Outputs : distributed set[Output];
Generic : Boolean;
Max_ExecutionTime : Real;
MaxResponseTime : Real;
MinCalling.Period : Real;
InitialState : Real;
Period : Real;
Description : String;

AdaCode: String;};

operations =(
BuildDisplay (op : Operator)

returns (Operator)
method (OperatorBuildDisplay);

FindExactMatch (op: Operator, name: String)
returns (Operator)
method (OperatorFindExactMatch);

FindBest_Match (op : Operator, name: Sing,
MET: Real)

returns (Operator)
method (OperatorFindBestMatch);

end Operator,

43

The declaration of the object class for "Operator" listed above demonstrates

how the properties and some of the methods for an object would be declared. Note that the

properties "Inputs" and "Outputs" are declared as sets containing objects. These input and

output objects are further defined by the declarations below. Not shown here, but

recommended for future implementation is a method which will take the sets of inputs and

outputs and perform an evaluation to determine if there are partial matches with the

designer's specified requirements. Also note that the properties inputs and outputs could

also have been declared to be of type string.

define type Input

properties =(
InputName String;
InputType InpuLOutpuLType;

end Input;

define type Output

properties =(
OutputName: String;
OutpuLType : InpuLOutpuLType;

end Output;

define type InpuLOutputType

is enum (StringType, Integer_Type, ReaLType,
BooleanType);

Note in the declaration of the class "Types" below, the property attribute

"IsOperator" is defined in terms of another object, the class of objects "Operator," which

was declared above. This demonstrates some of the flexibility of object-oriented systems.

44

define type Types

supertypes = (Component);

properties =(
Name: String;
Generic: Boolean;
Description: String;
IsOperator: Operator,I;

end Types;

The implementation of some of the above methods is described in the next

section of this thesis. To activate any of the methods, the user must send a message to the

object. The details of exactly how the operation is performed is hidden from the user. This

demonstrates the concept of abstraction. The user doesn't need to know the details of how

the Software Base Management System returns the best possible component match from

the software base. The details of how it is done is a decision that is properly left to the

designer of the object-oriented system. As priorities change, this designer has the option of

writing new, improved methods to implement different operations on the objects as

necessary.

Although the software base may contain many modules within a class with

the same name, the PSDL specifications will serve to uniquely identify each module.

Queries to the database can be structured to select the object modules having the desired

PSDL specification values that most nearly meet the designer's requirements. This schema

based on an object-oriented data model provides an expressive tool for representing the

reusable Ada software components and also has the advantages of understandability and

simplicity.

45

D. IMPLEMENTATION OF AN OBJECT-ORIENTED SOFTWARE BASE

MANAGEMENT SYSTEM FOR CAPS USING VBASE

In this section of the thesis, some of the implementation details for the CAPS Software

Base Management System will be demonstrated. But first, an overview will be given of

the Vbase object-oriented database management system, which is the system that is

recommended for use within CAPS. Vbase is a product of Ontologic Inc. It can be run in

the Unix environment on Sun workstations, which makes it particularly attractive for

CAPS. The "Vbase Integrated Object System" [Ref. 30], is a database and language

platform for rapidly and inexpensively building sophisticated complex data and process

intensive applications. Ontologic states that integrated object systems reflect the

convergence of work in artificial intelligence, object-oriented programming languages, and

databases. They also state that these systems combine the key aspects of each to provide a

dramatic improvement in software programming platforms as object systems will emerge as

a new standard in the near future. Not only can a Vbase application reference internal data

and code; it can also reference existing external data and code. In this way, Vbase can be

used to integrate several existing applications and databases into a single application with a

common model. This is a particularly attractive capability that can be put to use in the

integrated CAPS environment and it will be demonstrated later in this section.

1. Vbase System Overview

The Vbase system environment consists of the following components: (see

Figure 6)

" Vbase Database: Persistent objects are stored in the Vbase database. Objects can be
shared among multiple processes concurrently; access control and backup/recovery
facilities are provided.

* Type Definition Language (TDL): This is the Vbase data definition language. TDL
is used to define object types in the database, along with object properties,
operations, and inheritance. Its role is similar to that of the data definition languages

46

of traditional databases. It creates a typing structure in the database to serve as a data
model or conceptual schema for applications.

* "C" Object Processor (COP): This is the Vbase data manipulation language. COP is
an object extension of Kemighan and Ritchie standard C. It is used to implement the
operations of the object types defined using TDL.

" Integrated Toolset (ITS): a debugging and application tool environment that runs on
top of Unix.

* Object SQL: Vbase's query facility providing the retrieval features of the SQL
relational query language with extensions relevant to an object database system.

Data Methods Applications
Objects Source Source

Compile (TDL) (COP) (COP)

Time I I I

TDL COP COP
Compiler Compiler Compiler

7 - -1- Operation

Object Manager

Data
Run Vbase Database Exchange Application

Time Programs
System

Operating System Cls

(Unix) Calls

Figure 6. Vbase Components and Connections

2. Vbase Database Design

The steps involved in a typical Vbase database design are listed below:

* Identify the objects
• Identify their properties as much as possible
• Identify the frequent operations performed on the objects
* Define the objects using TDL

" Compile and debug the TDL definition of the objects

47

* Develop COP routines which implement the operations

* Compile and debug the COP programs

This methodology was utilized in the last section in the identification of the

objects in the CAPS software base. TDL was used to define the objects, classes,

properties and operations on the objects. The TDL code illustrates the encapsulation ability

of Vbase, which separates the external interface of an object from its internal workings. To

achieve encapsulation, each object type is made up of a separate specification and

implementation. TDL is used to specify the specification, which defines the interface of the

object (the operations which can be performed upon it) and the structure of the object (its

attributes or properties and its relationships with other objects). The implementation is the

actual COP computer code and data structures that cause the object to behave according to

its specification. Users can only interact with the object through the operations defined in

the specification written in TDL.

The TDL code below illustrates an example of creating an instance in the

database. Note that this is only one of the ways to load the database. Application

programs can be written to read input data, which would provide a faster mechanism for

loading the database. These programs would make use of methods written by the software

base designer to allow for the creation, deletion, and modification of objects in the software

base. Vbase already has built-in features within COP which aid in object creation, deletion,

and modification. The TDL code below creates an instance of an Operator in the software

base. For simplicity, the inputs and outputs properties are declared to be of type string.

When the Ada code from this object is printed to the terminal or a file, it is printed in the

proper multi-line format.

define Operator Operator_1

name= "startup";
inputs = "patient-chart: medical_history, temperature: real";
outputs = "estimated-power: real, treatmentfinished: boolean";

48

maxexecutiontime = 90;

description = "{ Extracts the tumor diameter from the
medical history and uses it to calculate
the maximum safe treatment power.
Estimate power is zero if no tumor is present.
Treatment finished is true only
if no tumor is present. ";

ADACODE =" WITH weapons-controller-package;
USE weapons...controller.package;
PROCEDURE controllerstart-up (control-panel : IN real;

sensor-input: IN real;
missile_control : OUT real) IS

enable-signal : real;
BEGIN

enablesignal := calculate_controllevel (controLpanel,
sensor-input);

missilecontrol := enable-signal;
END controllerstart_up; ";

end OperatorJ;

3. Using COP to Implement the Methods Associated With the Objects

in the CAPS Software Base

The final phase in the design of an object-oriented system is to implement the

operations or methods which have been defined for the objects and classes in the software

base. These methods were declared within the objects using TDL code in the previous

section. Each of the methods must now be implemented using COP. COP is an object-

based superset of the language C. All features and control structures of standard C will

work within Vbase. COP provides extensions to C to allow for operations involving the

objects in the database. This is a very powerful capability of Vbase as the full capabilities

of the C programming language are available to the software base designer and applications

programmer. One of the methods that was defined for the object "Operator" was

"OperatorFindExactMatch." This operation takes as input the name of an operator and

iterates through the instances in the class of operators to find an exact match. This is a

49

very simple example that was chosen just to demonstrate the concept and feasibility. The

method could just as easily have been written to check for a match of all the PSDL

specifications input by the user. The COP code below implements the method

"OperatorFindExactNatch" and illustrates a search based on operator name only:

#include <stdio.h> /* include standard C routines ~

#include <string.h>

#define MAXSIZE 500
import $Type; /* $ denotes a Vbase object *
import $Class; /* import these objects needed for *
import $Operator, /* this application *

enter module $Operator, I* use the object called operator *

method
obj $Operator
OperatorFindExactMatch (anOperatorinputString)

obj $Operator an~perator,
obj $String inputString;

(/* declaration of local variables *
FILE *out;
char op-.name[MAXSIZE];
char opJnput[MAXSIZE];
char op...output[MlAXSIZE];
char op..sescriptionjIMAXSlZE];
char op-ADACODE[MAXSIZEI;
int found = 0;
obj $Operator theOperator,
obj $Entity theEnt;
obj $Integer theMET;

out = fopen("SB-OUT," "w");

iterate (theEnt =$Operator.class) /* iterate through the Operator class *

theOperator =assert (theEnt, obj $Operator);
if (theOperator.name = inputString)

found = 1;
/* convert object code to C code *

AK -ringToC(theOperator.name, opname, MAXSIZE);

50

AM-stringToC(theOperator.input, opinput, MAXSIZE);
AM.stringToC(theOperator.output, op-output,

MAXSIZE);
AM-stringToC(theOperator.description,

op-description, MAXSIZE);
AM-stringToC(theOperator.ADACODE, opADACODE,

MAXSIZE);

printf("PSDL SPEC NAME: %s\n," op__name);
printf("PSDL SPEC INPUT: %sn," op-input);
printf("PSDL SPEC OUTPUT: %s\n," op-output);
printf("PSDL SPEC MET: %dWn,"

theOperator.max execution-time);
printf("PSDL DESCRIPTION: %s\n");
printf("%s\n," op-idescription);
printf(" %An");
printf("ADA CODE: %A");
printf("%sfn," op.ADACODE);

fputs (opADACODE, out);
printf(" %s");
i

Iif (found != 1)
(

printf("NO MATCH IN THE SOFTWARE BASE %s\n");I

return (anOperator);

The COP code below implements the method "OperatorFindBestMatch." It is

very similar to the code for OperatorFindExactMatc, except that it allows for the case

where there are two operators in the software base with the same name.

OperatorFindBestMatch returns the operator (or operators, if there is more than one) that

have maximum execution times less than the user specified value. The criteria as to what

exactly constitutes a "best match" is a decision that must be made and implemented by the

designer of the Software Base Management System. In this simple example, the maximum

execution time for an or -ator was chosen as the primary factor in determining component

suitability.

51

method
obj $Operator
OperatorFindBestMatch (anOperator, inputString, theMET)

obj $Operator anOperator
obj $String inputString;
obj $Integer theMET;

{ /"' declaration of local variables *
FILE *ot;

char op__name[MAXSIZE];
char opjnput[MAkXSIZE];
char op-o.utput[MAXSIZE];
char op__lescription[MAXSIZE];
char opADA, ODE[MAXSIZEI;
int found = 0;
obj $Operator theOperator,
obj $Entity theEnt;

out = fopen('t SB_.OUT," "w");

iterate (theEnt =$Operator.class)

theOperator =assert (theEnt, obj $Operator);
if ((theOperator.nanie = inputString) &&

(theOperator.niax execution-time < theMET))

found = 1;
1* convert object code to C code *

AM-stringToC(theOperator.naxne, op...namne, MAXSIZE);
AM-stringToC(theOperator.input, op-input,

MAXSIZE);
AM-stingToC(theOperator.output, opoqutput,

MAXSIZE);
AM-stringToC(theOperator.description,

op-description, MAXSIZE);

AM-stringToC(theOperator.ADA-CODE, op-ADA&CODE,
MAXSIZE);

printf("PSDL SPEC NAME: %sAn," op__name);
printf("PSDL SPEC INPUT: %s\n," opijnput);
printf("PSDL SPEC OUTPUT: %s\n," op-output);
printf("PSDL SPEC MET: %d\n,"

theOperator.niax-executionjine);
printf("PSDL DESCRIPTION: %s\n");
printf("%s\n," op-.description);
printf(" Sn)
printf("ADA CODE: sn)
printfC'%s\n," op-ADA-CODE);

52

fputs (opADACODE, out);
printf(" %sn");
I

if (found != 1){
printf("NO MATCH IN THE SOFTWARE BASE %s\n");I

return (anOperator);

The other operations and methods which were discussed in the previous section

have not been implemented in this thesis. An excellent follow-up thesis to this one can

concentrate on implementing all the software base object methods. The intention of this

thesis was just to demonstrate the feasibility of using an object-based system for the CAPS

Software Base Management System.

4. Interface Requirements Between the SBMS and the User Interface

From within the CAPS User Interface module, the designer will select the option

of gaining access to the SBMS. To activate the SBMS, the User Interface module will call

a COP application program called "SoftwareBase." This program (see Appendix B)

serves as the primary query application routine that will send messages activating the

methods that will perform the queries and other software base operations. It serves as the

interface between the prototype designer and the underlying system (Vbase). The goal is to

make the underlying system (Vbase) transparent to the designer. In other words, the

designer should not need to know any details about Vbase in order to make use of the

CAPS SBMS.

The COP application program will read the file containing the PSDL

specifications. This file is called "PSDLSPECS," and is provided from the User

Interface by the Syntax Directed Editor. It serves as the designer's input to the SBMS.

Using the specifications input by the designer, the appropriate methods will be activated to

search the software base for exact and best matches that will meet the designer's

53

requirements. The output from the SBMS is the Ada code module displayed on the screen,

which is also written to an output file called "SBOUT." The designer now has the option

of making use of that module or returning to the User Interface to further decompose his

PSDL program. To get back into the SBMS, the designer will again have to select that

option from within the User Interface.

The search of the software base can be made based on the object name, and is

more completely defined through the PSDL specifications. The probability of an exact

match is most likely not very high. Therefore, some flexibility must be provided within the

COP application routines in order to locate near-matches in an attempt to find a possibly

useful alternative Ada module.

5. Other Useful Vbase Capabilities

Future enhancements to the CAPS SBMS should provide an interface to enable

the prototype designer to make use of the additional Vbase capabilities discussed below.

One of these added capabilities is the Integrated Tool Set (ITS). The ITS is a single tool

combining the functionality of a source browser, database browser, and source debugger.

The source browser is used to view COP source files. The debugger is a source-level COP

debugger used to control a running Vbase application program. The database browser is

used to display and modify application database objects. The database browser thus

provides the designer with some flexibility as an alternate means to view the objects in the

software base.

Another option available to the prototype designer is the use of Vbase Object

SQL. Object SQL is the Vbase implementation of the SQL query language. It is an

interactive database query language used to generate tabular reports. Reports can be

displayed on the screen or copied to files for further processing. Object SQL is a fourth

generation language which should be easy to learn for those having any familiarity with

54

relational SQL. It is simple and convenient enough to be used for casual queries of the

database. It is also powerful enough to produce many of the data processing reports that

would otherwise require conventional programming. Short simple queries are generally

typed in on the fly giving the user interactive access to the database.

6. Problems With Vbase

Vbase and the other OODBMS systems currently available are still very new and

have a number of shortfalls that need to be addressed. One of the current major problems

with Vbase is the quality of the user documentation. The user's manual has a number of

errors in it including sample programs that will not run due to syntax errors. These were

pointed out to Ontologic Inc. and updates to the manual are in progress. A listing of some

of the syntax errors and user manual problems is available in Appendix C.

Vbase has a very slow compilation speed. The process of defining the objects

and the database schema through the use of TDL and COP is a slow, time-consuming

process. This problem is even more pronounced with more complex schemas. Once the

TDL and COP programs are successfully compiled, the actual runtime of the programs in

simple applications appears to be adequate.

The objects in the CAPS software base contain Ada program modules as one of

the properties of the object. In the implementation of the software base, great difficulties

were encountered in loading the software base with multi-line text input. A Vbase database

can be loaded either through the use of TDL code as illustrated in this thesis or through the

use of a COP method. It was found that the same multi-line text input would work using

TDL but not when using COP. The COP compiler had problems identifying a carriage

return. This problem was reported to Ontologic, and they are investigating it.

Vbase does not have a capability to easily perform schema modification, which is

supposed to be one of the advantages of object-oriented database management systems.

55

Modifications to the Vbase database schema must be made through the use of TDL and

COP code, which then has to be recompiled. This is a time-consuming process. Vbase

also has some problems with inheritance operations and does not support multiple

inheritance. The vendor claims that these are all future enhancements that remain to be

implemented. Object SQL appears to have been added to Vbase due to market demand and

familiarity with SQL, rather then to any sound technical basis.

Typing a carriage return during a multi-line text input will result in a Vbase error

message. In order to make a multi-line text input into a Vbase database, the user can either

use a continuous string bounded by quotation marks or use the sequence of characters

'M12" in place of a carriage return.

Many of the problems encountered in the development of the CAPS software

base are typical of the problems that are experienced with any new software system. As the

Vbase system matures, eventually these type of problems should be overcome.

E. DISCUSSION OF KNOWLEDGE BASE SUPPORT FOR RAPID

PROTOTYPING

This section will discuss the possibility for the inclusion of expert system technology

into the CAPS SBMS. As presented in Ref. 31, it may be desirable to automate the

process of managing the reusable components in the software base because this frees the

human designer from the burden of remembering what software components are currently

available. Expert system technology is appropriate for the problem because the ndmber of

useful software components is so large that it is impractical to store them all explicitly. The

retrieval of reusable components from a software base is a difficult search problem in a

very large space. Exhaustive searching is impractical because the space is much too large.

These considerations suggest using heuristic search methods to aid in the retrieval of

software modules based on approximate matches of PSDL specifications. Heuristic search

56

methods are a common component of expert systems. Expert system technology can be

more effective and produce more accurate automated retrievals than classical information

retrieval techniques using keyword searching. Further research into the incorporation of

expert system technology within the CAPS SBMS is wan-anted as it will further contribute

to software designer productivity. This would be an excellent topic for a follow-up thesis.

57

IV. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSIONS

There are very few tools currently available that help the designers and users of hard,

real-time software systems to clearly define and analyze critical system requirements and

timing constraints. The Computer Aided Prototyping System is a software engineering tool

that is currently being developed that implements the rapid prototyping methodology in the

design of hard, real-time, embedded software systems. CAPS provides a flexible and

powerful tool that offers a new approach to the development of software in a cost-efficient

and timely manner. The most noteworthy contribution of CAPS to the advancement of the

rapid prototyping methodology lies in the fact that it provides for the automatic generation

of executable prototypes through the use of formal specifications and reusable software

components.

This thesis has concentrated on the development of the Software Base Management

System, which is a key component of the CAPS system and the rapid prototyping

methodology. A robust Software Base Management System containing a library of

reusable Ada components can significantly contribute to the success of the rapid

prototyping process and enhance designer productivity.

The goal of this thesis was to develop a conceptual level design of the Software Base

Management System for CAPS, and to provide guidelines for its implementation. A basic

structure for the Software Base Management System was developed using object-oriented

technology, and a simple implementation was demonstrated using a new database software

package (Vbase). The advantage of using an object-oriented system is that it offers the

designer a high level of flexibility and power in implementing the most complex database

58

operations. An object-oriented approach offers increased modeling power, a high level of

abstraction, and the ability to inherit and refine object properties. Interface requirements

and integration within the CAPS prototyping environment were also discussed. This study

has accomplished the goals of the thesis and identified key aspects of the Software Base

Management System for future implementation and possible follow-up thesis work.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

This thesis has provided a foundation upon which further implementation of the

Software Base Management System can be based. Further research and testing is required

to complete full implementation of the system and to identify potential weaknesses. This

author recommends work in the following specific areas:

The design and implementation of methods within the software objects to perform
more complex analysis and software base retrieval operations. Some of the methods
that were proposed for future implementation include the analysis of the type and
number of input and output parameters. It is recommended that a metric be
developed to assist in this analysis and provide a standard upon which to evaluate the
suitability of components having only a partial match with the specifications.

" Implementation of methods to assist the prototype designer in performing software
base maintenance operations. These operations include the insertion of new modules
into the software base, as well as provide for the deletion or modification to existing
object modules.

" Design and implementation of a CAPS term rewrite system which will provide for
the normalization of software specifications to be used to find and retrieve the
required components from the software base. This is perhaps the most difficult
subsystem of CAPS that needs to be implemented. Because there are many syntactic
forms for the same semantic description, reduction to a normal form is a necessity as
it will provide a more practical approach than trying to generate all the different
possible variations of a specification description and searching the software base for
each variation.

" The development of an expert system interface to the software base. This system
can possibly include some of the term rewrite operations and can also assist in the
analysis of component suitability in matching the prototype designer's specifications.

59

APPENDIX A

MAPPING OF PSDL TO ADA

PSDL SPECIFICATION:

OPERATOR start-up
SPECIFICATION
INPUT patientchart: medicalhistory, temperature: real
OUTPUT estimatedpower. real, treatment_finished : boolean

BY REQUIREMENTS start-up time
MAXIMUM EXECUTION TIME 90 ms
BY REQUIREMENTS temperaturetolerance

DESCRIPTION
(Extracts the tumor diameter from the medical history and uses

it to calculate the maximum safe treatment power. Estimated
power is zero if no tumor is present. Treatment finished is true
only if no tumor is present.I
END

ADA IMPLEMENTATION:

WITH medicalhistory-package; USE medicalhistory-package;
PROCEDURE startup (patient-chart : IN medicalhistory;

temperature: IN real;
estimatedpower: OUT real;
treatment_finished: OUT boolean) IS

diameter: real;
k: constant real := 0.5;

BEGIN
diameter := geLtumordiameter(patienLchart, "brain-tumor");
estimatedpower := k * diameter * 2;
treatment_finished := false;

EXCEPTION
WHEN no_tumor =>
estimated-power := 0.0;
treatmentfinished := true;

END start_up;

PSDL SPECIFICATION:

OPERATOR maintain
SPECIFICATION
INPUT temperature: real

60

OUTPUT estimated_power: real, treatmentfinished: boolean
MAXIMUM EXECUTION TIME 90 ms

BY REQUIREMENTS temperaturetolerance
DESCRIPTION
(The power is controlled to keep it between 42.4 and 42.6

degrees C.I
END

ADA IMPLEMENTATION:

PROCEDURE maintain (temperature: IN real;
estimated~power OUT real;
treatmentfinished: OUT boolean) IS

c: constant real := 10.0
BEGIN

IF temperature > 42.5 THEN estimatedpower := 0.0;
ELSE estimated-power := c * (42.5 -temperature);
END IF;
treatmentLfinished := true;

END maintain;

PSDL SPECIFICATION:

OPERATOR safetycontrol
SPECIFICATION
INPUT treatmentswitch, treatmentfinished : boolean

estimated.power: real
OUTPUT treatment-power: real

BY REQUIREMENTS shutdown
MAXIMUM EXECUTION TIME 10 ms
BY REQUIREMENTS temperaturetolerance

DESCRIPTION
(The treatment power is equal to the estimated power if the

treatment switch is true and treatment finished is false, and
otherwise the treatment power is zero,

END

ADA IMPLEMENTATION:

PROCEDURE safetycontrol (estimated power: IN real;
treatment_finished: IN boolean;
treatment-switch: IN boolean;
treatmentLpower: OUT real) IS

BEGIN
IF treatment-switch and not treatment-finished
THEN treatment.power := estimated-power,
ELSE treatmenLpower := 0.0;

61

END]IF;
END safetys-ontrol;

62

APPENDIX B

SAMPLE APPLICATION PROGRAM

#include <stdio.h>
#include <string.h>

import $Operator,

/* THIS APPLICATION PROGRAM READS IN SELECT PSDL */
/* SPECIFICATIONS FROM AN INPUT FILE AND CALLS THE
/* VBASE METHODS TO PERFORM QUERIES ON THE SOFTWARE BASE. */

void substring (instr, startpos, numchar, substr)
/* THIS FUNCTION TAKES AN INPUT STRING AND RETURNS
/* A SUBSTRING
char instr[30], substr[30];
int startpos;
hat numchar,(

if (startpos < strlen(instr))

instr[O] = V;
strcat (instr, instr + startpos);)

strncpy (substr, instr, numchar);

main (argc, argv)

int argc;
char **argv;

int eof flag = 1;
int integerMET;
char line[30];
char operatr[30], MET[30];
char operator__name[30], met[30];
FILE *in;

char *dbname;
char *getenv0;

63

obj $Operator theOperator, currentOperator,
obj $String theOperatorNaxne;
obj $Integer theMET;

in = fopen("PSDL-SPECS," "r");
if (argc>l1)

dbname = argvI];

else if (dbname = getenv("DBNAME"))

else

printf("Must specify database name, either as a command
line argument,\or via the Unix environment variable DBNAMEWn);

exit(1);

fgets~line, 30, in);

while (feof in) !=eoflag)

strncpy (operatr, line, 8);
if (strncmp("OPERATOR," operatr, 8) ==0)

substring(line, 9, (strlen(line) - 10),
operatorjlname);

strncpy (met, line, 22);
if (strncmp("MAXIMIUM EXECUTION TIME," met, 22) ==0)

substring (line, 23, (strlen(line) - 24), MET);
integer..MET = (atoi(MET));

fgets (line, 30, in);

AM-databaseOpen (dbname, 0); /* OPENS DATABASE *

theOperatorName = operator-name;

theMET = integer_-MET;

(void) $Operator$FindExactMatch ($Operator 1,
theOperatorName);

64

(void) $Operator$FindBestMatch ($Operator 1,
theOperatorNanie, theMET);

pr ' tect
AM-.1databaseClose (dbnanie);

65

APPENDIX C

LISTING OF ERRORS IN VBASE MANUAL

For manual issued September 29, 1987

1. In the "Tutorial Program Stage 2", the file called PartsExceptions.tdl has a syntax error

in the first line of the file:

"define Exception PartException" should read "define ExceptionType PartException."

2. On page rl-12, there is a syntax error in the sample program. The built-in

function "AMStringToC" should read "AM-stringToC."

3. On page 111- 18, there is a syntax error in the sample program. The built-in

function "AMStringToC" should read "AM-stringToC."

4. On page 111-74, there is an error in the sample program. The semicolon should

be removed after the iterate statement to allow the operations after the statement to be

performed in the iterate loop.

66

LIST OF REFERENCES

1. Elbert, T. F., Embedded Programming in Ada, Van Nostrand Reinhold Publishing
Co., Inc., New York, NY, 1986.

2. Chitwood, G., "Ada Meets the Challenge of Real-Time Simulation," Defense
Computing, v. 1, no. 4, pp. 32-38, July/August 1988.

3. Nielsen, K., and Shumate, K., Designing Large Real-Time Systems With Ada,
Intertext Publications/Multiscience Press, Inc., New York, NY, 1988.

4. Winograd, T., "Beyond Programming Languages," Communications of the ACM,
pp. 391-401, July 1979.

5. Barstow, D. R., Shrobe, H. E., and Sandewall, E., Interactive Programming
Environments, McGraw-Hill Book Company, New York, NY, 1984.

6. Luqi and Ketabchi, M., A Computer Aided Prototyping System, Tech.
Rep. NPS52-87-01 1, Naval Postgraduate School, Monterey, CA, 1987 and in IEEE
Software, pp. 66-72, March 1988.

7. Luqi, Rapid Prototyping for Large Software System Design, Ph.D dissertation,
University of Minnesota, Minneapolis, MN, 1987.

8. Berzins, V., and Luqi, Software Engineering with Abstractions: An Integrated
Approach to Software Development Using Ada, Addison-Wesley Publishing Co.,
Inc., 1988.

9. Berzins, V., and Luqi, Handbook of Computer-Aided Software Engineering:
Languages for Specification, Design, and Prototyping, Van Nostrand Reinhold
Publishing Co., Inc., New York, NY, 1988.

10. Booch, G., Software Engineering with Ada, 2nd ed., Benjamin Cummings
Publishing Co., Inc., Menlo Park, CA, 1987.

11. Prieto-Diaz, R., and Freeman, P., "Classifying Software for Reusability," IEEE
Software, pp. 6-16, January 1987.

12. Yin, W., Tanik, M., Yun, D., Lee, T., Dale, A., "Softvare Reusability: A Survey
and a Reusability Experiment," Proceedings of the 1987 Fall Joint Computer
Conference, Computer Society Press of the IEEE, Washington D.C., 1987.

13. Burton, B. A., "The Reusable Software Library," IEEE Software, pp. 25-32, July
1987.

14. Goguen, J. A., "Reusing and Interconnecting Software Components," Computer,
pp. 16-28, February 1986.

67

15. Matsumoto, Y., "A Software Factory: An Overall Approach to Software
Production," Tutorial: Software Reusability, by Peter Freeman, Computer Society
Press of the IEEE, Washington D.C., 1987.

16. Freeman, P., "Reusable Software Engineering Concepts and Research Directions,"
ITT Proceedings of the Workshop on Reusability in Programming, pp. 2-16, 1983.

17. Rice, J. R., and Schwetman, H. D., "Interface Issues in a Software Parts
Technology," IT Proceedings of the Workshop on Reusability in Programming,
pp. 129-137, 1983.

18. Johnson, R. E., and Foote, B., "Designing Reusable Classes," Journal of Object-
Oriented Programming, pp. 22-35, June/July, 1988.

19. Meyer, B., Object-Oriented Software Construction, Prentice Hall Inc., Englewood
Cliffs, NJ, 1988.

20. Wegner, P., "Varieties of Reusability," ITT Proceedings of the Workshop on
Reusability in Programming, pp. 30-44, 1983.

21. Parnas, D. L., "Enhancing Reusability with Information Hiding," 177 Proceedings
of the Workshop on Reusability in Programming, pp. 240-247, 1983.

22. Booch, G., Software Components with Ada, Benjamin Cummings Publishing Co.,
Inc., Menlo Park, CA, 1987.

23. Lenz, M., "Software Reuse through Building Blocks," IEEE Software, pp. 34-42,
July, 1987.

24. Berard, E., An Object Oriented Design Handbook for Ada Software, EVB Software
Engineering, Inc., Frederick, MD, 1985.

25. Felsinger, R. C., Object Oriented Design (Course Notes), Technology Training
Corporation, Torrance, CA, June 1988.

26. Conn, R., The Ada Software Repository and the Defense Data Network, Zoetrope
Publishing Co., Inc., New York, NY, 1987.

27. Anderson, C., "The CAMP Approach to Software Reuse," Defense Computing,
pp. 25-30, September/October 1988.

28. Ketabchi, M., Object Oriented Database Management Systems for Complex Data and
Process Intensive Applications (Course Notes), Santa Clara University, Santa Clara,
CA, June 1988.

29. Robson, D., "Object-Oriented Software Systems," Byte Magazine, pages 74-86,
August, 1981.

30. Vbase Integrated Object Database User's Manual, Ontologic Inc., Billerica, MA,
1987.

68

31. Luqi, "Knowledge Base Support for Rapid Prototyping" IEEE Expert, November
1988.

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Office of Naval Research
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office
OUSDRE(R&AT)
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command
Attn. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

70

10. Navy Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, California 92152-5000

11. National Science Foundation
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation
Division of Computer and Computation Research
Attn. Dr. Peter Freeman
Washington, D.C. 20550

13. National Science Foundation
Director, PYL Program
Attn. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research
Applied Mathematics and Computer Science, Code 1211
Attn. Mr J. Smith

* 800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

17. Southern Methodist University
Computer Science Department
Attn. Dr. Murat Tanik
Dallas, Texas 75275

18. Editor-in-Chief, IEEE Software
Attn. Dr. Ted Lewis
Oregon State University
Computer Science Department
Corvallis, Oregon 97331

19. University of Texas at Austin
Computer Science Department
Attn. Dr. Al Mok
Austin, Texas 78712

71

19. Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

20. Defense Advanced Research Projects Agency (DARPA)
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

21. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

22. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

23. COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

24. LTCOL Kirk Lewis, USA
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

25. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 13441-5700

26. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

27. Professor Luqi
Code 52LQ
Naval Postgraduate School
Computer Science Department
Monterey, California 93943-5000

72

